
1

AE 482 FINAL PROJECT: DRAWING

WITH THE UR3 ROBOT
Jadyn Chowdhury1

Jadynnc2 | Partner - Chris Sun | TA - Lukas Zscherpel | Tuesday 3PM Section | 10/08/24

AE 482: Introduction to Robotics, Urbana, IL, 61820, United States of America

This lab explores the intersection of computer vision and robotics, enabling the UR3 robot

to draw input images with precision. Using OpenCV and ROS, the system produced detailed

outputs, winning the best-drawn image competition, and showcasing robotics' potential in

automation and practical applications.

I. Nomenclature

𝑅𝑂𝑆 = Robot Operating System used to control the UR3 robot via Python scripts.

𝑈𝑅3 = A collaborative robotic arm used in the lab.

𝐹𝐾 = Forward Kinematics-calculating position and orientation of end-effector, given joint angles.

𝑇 = Transformation Matrix-4x4 matrix encoding both rotation and translation.

𝑆 = Screw Axis-six vectors describe rotation and translation of each joint, relative to base frame.

𝜃 = Joint Angles- angles for each of the six joints in the UR3 robot.

End-Effector = The tool attached to the end of the robotic arm, equipped with a suction device.

𝑇(𝜃) = Homogeneous Transformation Matrix- encodes both the orientation and position of end-effector.

𝐼𝐾 = Inverse Kinematics - joint angles to position end-effector at a specified location and orientation.

𝐷𝑂𝐹 = Degrees of Freedom- six independent movements (or axes) available to the UR3 robot.

𝑌𝑎𝑤 = Rotation around z-axis, representing the orientation of the end-effector in the horizontal plane.

𝐸𝑙𝑏𝑜𝑤 − 𝑈𝑝 = IK solution where robot’s 'elbow' is oriented in an upward position to avoid obstacles.

𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑊𝑜𝑟𝑙𝑑 𝐹𝑟𝑎𝑚𝑒= (w) Coordinate system where robot’s base is used as the origin for end-effector positions.

𝐵𝑎𝑠𝑒 𝐹𝑟𝑎𝑚𝑒 = (0) Local coordinate system fixed at base, to which joint angles and transformations are relative.

II. Introduction

The purpose of this project is to explore the practical applications of robotic systems in precision tasks such as drawing.

Using the UR3 robot and ROS, we combine advanced robotics and image processing techniques to enable automated

contour detection and replication. This lab demonstrates how robots can be programmed to interpret and replicate

visual data, paving the way for innovative applications in fields such as manufacturing, art, and automation.

The motivation behind this project is to gain hands-on experience with forward and inverse kinematics, transformation

matrices, and real-world applications of image processing. By using OpenCV for image analysis and ROS for robot

control, the lab integrates software and hardware solutions to solve a complex task: transforming an input image into

precise, physical movements for the robot to recreate that image on paper.

This project has real-world implications in domains where precision and automation are critical. For instance, contour-

based tasks such as engraving, painting, and surgical procedures can benefit from similar methodologies. By

controlling the UR3 robot to draw, we demonstrate its potential to transition from abstract data interpretation to

tangible outputs, showcasing the versatility and accuracy of modern robotic systems.

1Aerospace Engineering and Computer Science, Grainger School of Engineering at UIUC

2

III. Method

The development of the robotic drawing pipeline required integrating image processing, robot kinematics, and

execution logic to ensure precise replication of an input image. The final implementation was the result of iterative

improvements, guided by the need to handle various levels of image complexity while maintaining scalability and

efficiency.

A. Contour Detection and Optimization

After the image was resized (see section E), it underwent a series of preprocessing steps to extract meaningful

contours. The find_contours function encapsulated these steps, starting with grayscale conversion and Gaussian

blurring to reduce noise. Adaptive thresholding was then applied to segment the image into regions of interest,

grey_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

blur = cv2.GaussianBlur(grey_img, (5, 5), 0)

thresh = cv2.adaptiveThreshold(blur, 255,

cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)

Morphological operations, including opening and closing, further refined the segmented image by removing small

noise and closing gaps in contours. The edges were then detected using the Canny algorithm,

edges = cv2.Canny(morph, 50, 150, apertureSize=3)

contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

While these steps extracted initial contours, they often contained noise or redundant points. The find_contours

function applied additional processing, such as filtering contours by area, interpolating points for smoother curves,

and merging close contours to prevent overlapping outlines. These functions were written for this specific use case,

for example for filling in gaps between contour renditions,

def interpolate_contour(contour, step=2):

 """Interpolate additional points along a contour for higher

detail."""

 interpolated = []

 for i in range(len(contour)):

 start_point = contour[i]

 end_point = contour[(i + 1) % len(contour)]

 distance = np.linalg.norm(np.array(end_point) -

np.array(start_point))

 num_steps = max(int(distance / step), 1)

 for j in range(num_steps):

 interpolated_point = (

int(start_point[0] + (end_point[0] - start_point[0])

* j / num_steps),

int(start_point[1] + (end_point[1] - start_point[1])

* j / num_steps)

)

 interpolated.append(interpolated_point)

 return interpolated

3

Alongside this function, the other functions designed and implemented were:

• smooth_path: Apply a moving average to smooth the path points.

• merge_close_contours: Merge contours that are within a certain proximity to prevent

double outlines.

• adaptive_sample: Adaptively sample points based on curvature. Used vector cosine analysis

to identify linear contours.

• group_straight_lines: Group consecutive points that form a straight line. Allowed for

just two points to be drawn rather than multiple in a line, greatly increasing speed of drawing.

These optimizations ensured that the detected contours were both meaningful and manageable for the robot to

replicate.

B. Transforming Image Coordinates to World Coordinates

The UR3 robot operates in a three-dimensional workspace, making it essential to map pixel-based image coordinates

to its world frame. The IMG2W function performed this transformation, scaling the image coordinates based on the

physical dimensions of the drawing sheet and applying offsets to align the image with the robot's starting position.

def IMG2W(row, col):

 x = x_offset + col * scale

 y = y_offset + row * scale

 return x, y

This transformation allowed the robot to draw images of varying sizes and resolutions while ensuring the contours fit

within the defined workspace. Parameters such as x_offset, y_offset, and scale were adjusted dynamically

based on the input image's dimensions and the drawing sheet's size.

C. Path Planning for Efficient Drawing

After transforming the contours into world coordinates, the next step was to determine the most efficient path for the

robot to follow. This involved sorting the contours to minimize travel distance between them, implemented in the

sort_contours_by_proximity function,

def sort_contours_by_proximity(contours):

 sorted_contours = []

 current_position = (x_offset, y_offset)

 while contours:

 closest_contour = min(

 contours, key=lambda c:

np.linalg.norm(np.array(current_position) - np.array(IMG2W(c[0][1],

c[0][0])))

)

 sorted_contours.append(closest_contour)

 contours.remove(closest_contour)

 current_position = IMG2W(closest_contour[-1][1],

closest_contour[-1][0])

 return sorted_contours

This optimization reduced unnecessary movements, improving both the speed and accuracy of the drawing.

4

D. Robot Movements: Lifting and Drawing

The robot's movements were managed using two distinct commands: MoveJ for curves and MoveL for precise linear

movements. These were implemented in helper functions such as lift_pen and draw_path.

The lift_pen function for example ensured the pen was raised to a safe height before moving to a new starting

position,

def lift_pen(pub_cmd, loop_rate, target_point, height, vel, accel):

 x, y, _ = target_point

 lifted_point = np.array([x, y, height])

 move_arm(pub_cmd, loop_rate, lifted_point.tolist(), vel, accel,

'L')

The draw_path function guided the pen along the contours, transforming each point into joint angles using inverse

kinematics,

def draw_path(pub_command, loop_rate, path, vel, accel):

 for point in path:

 xw, yw = IMG2W(point[1], point[0])

 drawing_point = lab_invk(xw, yw, height_sheet, 0)

 move_arm(pub_command, loop_rate, drawing_point, vel, accel,

'L')

These functions allowed the robot to seamlessly transition between different segments of the drawing, maintaining

precision throughout. The draw_image function conducted these movements using a try-catch structure to skip

points that may be invalid and avoid the robot stopping due to an error.

E. Integrating the Pipeline

The final integration of all components occurred in the main function. This function initialized the ROS environment,

loaded the image, processed it to extract and optimize contours, and executed the drawing (simplified for readability),

def main():

 image = cv2.imread('./images/avengers7.jpg')

 contours = find_contours(image)

 sorted_contours = sort_contours_by_proximity(contours)

 draw_image(sorted_contours, pub_command, loop_rate, vel, accel)

By combining the preprocessing, coordinate transformation, and movement logic, this pipeline demonstrated the

versatility and efficiency of the system. The results were evaluated using images of varying complexity, showcasing

the scalability enabled by parameters.

F. Hyperparameters

The project relied on several hyperparameters to balance precision, efficiency, and scalability.

Hyperparameter Purpose Impact Why It’s Important

max_dimension Defines the

largest

dimension

(width or

height) of the

image after

scaling.

Higher values retain finer details;

lower values simplify contours

for faster processing.

Controls scalability and

allows the system to adapt

to images of varying

complexity.

5

merge_threshold Distance

threshold for

merging close

contours.

Larger values combine more

contours; smaller values preserve

individual contours.

Prevents redundant lines

and ensures smooth,

unified drawing paths.

step (in

interpolation)

Defines the

spacing

between

interpolated

points along

contours.

Smaller steps create smoother

curves; larger steps reduce detail

but improve processing speed.

Balances the need for

detailed drawing with

computational efficiency.

window_size Window size

for smoothing

contours using

a moving

average.

Larger values smooth paths more

aggressively; smaller values

retain finer details.

Ensures contours are clean

and free of noise,

improving the robot's

movement precision.

angle_threshold Angle

threshold for

grouping

points into

straight lines.

Lower thresholds group more

points; higher thresholds

preserve individual points.

Helps optimize drawing

paths by reducing

unnecessary movements.

scale Scales image

coordinates to

fit within the

robot’s

workspace.

Adjusted dynamically based on

max_dimension and the size of

the drawing surface.

Ensures that the image fits

on the physical drawing

area while maintaining the

correct proportions.

vel (velocity) Defines the

speed of the

robot arm

during

movements.

Higher values increase speed but

reduce precision; lower values

ensure accurate execution of fine

details.

Balances execution time

and drawing accuracy

based on the task's

requirements.

accel (acceleration) Defines the

acceleration of

the robot arm

during

movements.

Higher values allow quicker

transitions; lower values prevent

jerky movements that might

compromise drawing quality.

Ensures smooth and stable

movements during

drawing, especially for

delicate tasks.

Table 1: Hyperparameter

SPIN_RATE was another parameter that controls the feedback response time of the robot, but it is not considered a

hyperparameter as it was kept at 50Hz for all test cases. Focusing on one parameter in specific, max_dimension,

is helpful in understanding their importance in scalability. The first step in the pipeline involved processing the input

image to extract contours suitable for drawing. A key breakthrough in this phase was identifying max_dimension

as a critical hyperparameter that directly influenced the quality of the drawing. This parameter controlled the scaling

of the image, enabling the system to handle a wide range of image complexities. Larger values of max_dimension

retained more detail, resulting in higher precision at the cost of increased processing time. Conversely, smaller values

simplified the image, making it faster to process but less detailed. This was also directly correlated with drawing time.

The image was initially resized using max_dimension to scale its largest dimension to this value while maintaining

its aspect ratio,
max_dimension = 2000 # Adjustable parameter for drawing quality

scaling_factor = max_dimension / float(max(height, width))

image = cv2.resize(image, None, fx=scaling_factor, fy=scaling_factor,

interpolation=cv2.INTER_AREA)

6

This approach was inspired by the idea that bringing an image closer (effectively increasing max_dimension)

reveals finer details, while moving it further away (decreasing max_dimension) hides nuances. Take this example

image,

Figure 1: Ironman Reference Image

Before the image is drawn, the detected key points are shown, then the image is processed and the outline of the image

to be drawn is shown. This allowed for verification and improvements to be made without the need for waiting for the

robot to draw the whole image. Running this figure 1 with a max_dimension of 500 yields the following,

Image downscaled by a factor of 0.62 to reduce noise and processing

time.

Calculated scale: 0.2854

Detecting contours...

Detected 75 contours

Figure 2: Figure 1 detected key point contours (dim 500)

7

Figure 3: Figure 1 to be drawn (dim 500)

Evidently there are significant details missing. Now setting the dimension value to 2000,

Image downscaled by a factor of 2.5 to increase details.

Calculated scale: 0.0713

Detecting contours...

Detected 552 contours

Figure 4: Figure 1 detected key point contours (dim 2000)

8

Figure 5: Figure 1 image to be drawn (dim 2000)

It becomes quickly apparent that leveraging this hyperparameter enables detail control. That being said, the number

of contours has more than quadrupled, this adds significant drawing time to the image. It is also important to highlight

that there are images where additional detail becomes redundant whilst still taking a significant amount of time to be

drawn. It is important to establish the value dependent on the use case.

IV. Results

The results of this project demonstrate the effectiveness of the developed pipeline in enabling the UR3 robot to

replicate input images as precise drawings. By carefully tuning hyperparameters in Tasks 1 and 2, the robot

successfully produced visually accurate and aesthetically pleasing outputs. The success of the robot in the final

demonstration is underscored by winning the voting competition for the best-drawn image. A pen was chosen as the

drawing instrument to best reflect the fine details.

Figure 6: Pen in robot end effector

9

A. Task 1: Results and Hyperparameter Evaluation

In Task 1, the hyperparameters were adjusted to prioritize speed over detail, reflecting the need for rapid processing.

The chosen settings reduced the complexity of the image while ensuring that essential features were preserved.

Hyperparameter Value Purpose

max_dimension 600 Reduced to simplify image details, prioritizing speed over precision.

merge_threshold 15 Increased to merge nearby contours aggressively, reducing redundant drawing

paths.

step (in

interpolation)

5 Larger steps reduced the number of interpolated points, accelerating the drawing

process.

window_size 2 Smaller smoothing window retained enough detail to avoid oversmoothing.

angle_threshold 15° Larger threshold grouped more points into straight lines, optimizing movement

paths.

vel (velocity) 12 Increased speed of arm movement for faster execution.

accel (acceleration) 10 Increased acceleration for rapid transitions between points.

Table 2: Task 1 hyperparameters

The result of Task 1 is shown below, highlighting the robot’s ability to produce a simplified yet clear representation

of the input image. While the output lacked the finer details seen in later tasks, it demonstrated the effectiveness of a

speed-prioritized approach, completing the drawing in less than 10 minutes as per the task specifications.

Figure 7: Task 1 image

10

B. Task 2: Results and Hyperparameter Evaluation

In Task 2, the focus shifted to achieving a balance between precision and efficiency.

Hyperparameter Value Purpose

max_dimension 2000 Higher value retained finer image details for more precise contour

detection and drawing.

merge_threshold 10 Moderate threshold preserved individual contours, ensuring accurate path

tracing.

step (in

interpolation)

2 Smaller steps enhanced contour smoothness and drawing detail.

window_size 3 Balanced smoothing removed noise while preserving fine details in

contours.

angle_threshold 10° Stricter threshold reduced grouping, enabling detailed reproduction of

curved paths.

vel (velocity) 8 Reduced speed ensured higher accuracy in executing fine details.

accel
(acceleration)

8 Moderate acceleration avoided jerky movements, ensuring smooth

transitions.

Figure 8: Task 2 hyperparameters

The final image drawn was chosen due to its complexity being able to showcase our algorithm, and since it would be

recognizable and draw attention from voters. The image drawn by the robot was a clear and precise reproduction of

the input, winning the competition for the best-drawn image. This success highlights the robustness of the pipeline

and the effectiveness of the hyperparameter tuning.

Figure 9: Reference and Drawn task 2 image

11

The key points and contours for the submitted image are visualized below, showing the processed data that guided the

robot’s movements.

Figure 10: Submitted image contours (rotated as it is drawn portrait)

Figure 11: Submitted image to be drawn

12

C. Overall Performance

In addition to the submitted image, the robot performed well on a variety of other test images, showcasing its

versatility. The system’s scalability, achieved through the adjustable hyperparameters, enabled it to handle images of

varying complexity. This adaptability was a key factor in the success of the project, allowing the pipeline to be fine-

tuned for specific tasks and requirements.

Figure 12: Other drawn images

The results demonstrate that the robot not only met but exceeded expectations, successfully integrating image

processing and robotic control to achieve a high level of performance. The voting competition win further validates

the quality of the final implementation.

D. Self-Evaluation

Throughout the process of development and testing there were continuous needs to go back and reapproach and even

restart. This involved choosing different contour mapping algorithms, adding and removing helper functions, choosing

a pen or sharpie and designing approaches that were based on intuition (for example the scaling mechanism for detail).

The best evaluator for this progress was the contour map and final image drawn plots. It allowed for the comparison

of different algorithms and hyperparameter tuning without the need to wait for the robot to draw some images.

13

V. Conclusion

The success of this project demonstrates the effectiveness of combining advanced image processing techniques with

robotic kinematics to achieve precise and scalable task execution. Through iterative development and careful

hyperparameter tuning, the UR3 robot was able to replicate input images as detailed and accurate drawings,

culminating in a winning performance in the voting competition for the best-drawn image.

Key to this success was the ability to dynamically adjust parameters like max_dimension to balance detail and

speed, ensuring the pipeline could handle a wide range of image complexities. In addition the implementation of a

series of functions that enabled improvements of the raw key point data allowed for the most optimal placement of

points that the robot could draw. This adaptability highlights the robustness of the system and its potential for

application in fields such as manufacturing, art, and automation.

The project also underscored the importance of a structured development approach, integrating preprocessing,

transformation, and execution phases seamlessly. Overall, this lab provided valuable insights into real-world robotic

applications, blending technical precision with creative problem-solving to achieve outstanding results.

A. Reflection on the Labs

The lab sequence was an incredibly rewarding experience. As a computer science major, I appreciated the opportunity

to apply what I have learned in a hands-on setting, exploring how programming and robotics intersect. The Tower of

Hanoi lab was particularly exciting, as it allowed me to see the recursive algorithm I had studied extensively come to

life through the robot’s movements.

Lab 5 stood out for its integration of computer vision and robotics, which was both challenging and inspiring. Using

OpenCV to detect objects and map pixel coordinates to the world frame sparked ideas about real-world applications,

such as self-driving cars and automation processes.

The final project lab was the culmination of all the skills learned, combining computer vision, kinematics, and drawing

execution. Seeing the robot accurately replicate an image and winning the best-drawn image competition was

immensely satisfying. However, accessing workstations was a challenge, with labs overcrowded even at 2am. I

recommend reducing class sizes, adding more stations, or introducing a scheduling system to address this issue.

Despite this, the labs were highly enjoyable and instrumental in sparking further interest in robotics and computer

vision.

14

VI.Acknowledgments

The author wishes to express their gratitude to TA Lukas and Lab Partner Chris for their aid in completing the lab

as per the specifications.

VII.References

[1] Department of Electrical Engineering, Lab 5 Manual: Image Contour Detection and Drawing, University of

Illinois at Urbana-Champaign, Urbana, IL, 2024.

[2] Lynch, K. M., and Park, F. C., Modern Robotics: Mechanics, Planning, and Control, Preprint version,

Cambridge University Press, Cambridge, U.K., 2017.

15

VIII. Appendices

Appendix A: Kinematics Code
#!/usr/bin/env python

import numpy as np

import math

from scipy.linalg import expm

from lab4_header import *

"""

Use 'expm' for matrix exponential.

Angles are in radian, distance are in meters.

"""

def Get_MS():

 # =================== Your code starts here ====================#

 # Fill in the correct values for a1~6 and q1~6, as well as the M matrix

 s1 = np.array([[0],[0],[1],[150],[150],[0]])

 s2 = np.array([[0],[1],[0],[-162],[0],[-150]])

 s3 = np.array([[0],[1],[0],[-162],[0],[94]])

 s4 = np.array([[0],[1],[0],[-162],[0],[307]])

 s5 = np.array([[1],[0],[0],[0],[162],[-260]])

 s6 = np.array([[0],[1],[0],[-162],[0],[390]])

 S = np.column_stack([s1, s2, s3, s4, s5, s6])

 M = np.array([[0,-1,0,390],[0,0,-1, 401],[1,0,0,215.5],[0,0,0,1]])

 # ==#

16

 return M, S

def skew_symmetric_6x1(screw_axis):

 """

 Create the skew-symmetric matrix

 """

 omega = screw_axis[:3]

 v = screw_axis[3:]

 omega_skew = np.array([[0, -omega[2], omega[1]],

 [omega[2], 0, -omega[0]],

 [-omega[1], omega[0], 0]])

 skew_matrix = np.zeros((4, 4))

 skew_matrix[:3, :3] = omega_skew

 skew_matrix[:3, 3] = v

 return skew_matrix

def calculate_T01(S, M, theta):

 """

 Calculate the pose T_01

 Parameters:

 - S: 6xN srcre matrix

 - M: 4x4 initial config matrix

 - theta: 1xN the joint angles

17

 Returns:

 - T_01: 4x4 transformation matrix

 """

 T = np.eye(4)

 for i in range(S.shape[1]):

 screw_axis = S[:, i]

 skew_matrix = skew_symmetric_6x1(screw_axis)

 exp_S_theta = expm(skew_matrix * theta[i])

 T = np.dot(T, exp_S_theta)

 T_01 = np.dot(T, M)

 return T_01

"""

Function that calculates encoder numbers for each motor

"""

def lab_fk(theta1, theta2, theta3, theta4, theta5, theta6):

 # Initialize the return_value

 return_value = [None, None, None, None, None, None]

 print("Foward kinematics calculated:\n")

 # =================== Your code starts here ====================#

 M, S = Get_MS()

 theta = np.array([theta1, theta2, theta3, theta4, theta5, theta6])

18

 T = calculate_T01(S, M, theta)

 # ==#

 return_value[0] = theta1 + PI

 return_value[1] = theta2

 return_value[2] = theta3

 return_value[3] = theta4 - (0.5*PI)

 return_value[4] = theta5

 return_value[5] = theta6

 return return_value

"""

Function that calculates an elbow up Inverse Kinematic solution for the UR3

"""

def lab_invk(xWgrip, yWgrip, zWgrip, yaw_WgripDegree):

 # =================== Your code starts here ====================#

 # Convert degrees to radians

 yaw_WgripDegree_rad = np.deg2rad(yaw_WgripDegree)

 # Linear change from corner to centre

 x_grip = xWgrip + 150

19

 y_grip = yWgrip - 150

 z_grip = zWgrip - 10

 x_cen = x_grip - 53.5*np.cos(yaw_WgripDegree_rad)

 y_cen = y_grip - 53.5*np.sin(yaw_WgripDegree_rad)

 z_cen = z_grip

 phi = math.atan2(y_cen, x_cen)

 theta1 = phi - math.asin(110/(np.sqrt(x_cen**2 + y_cen**2)))

 theta6 = np.pi/2 + theta1 - yaw_WgripDegree_rad

 x_3end = x_cen + (27 + 83)*np.sin(theta1) - 83*np.cos(theta1)

 y_3end = y_cen - (27 + 83)*np.cos(theta1) - 83*np.sin(theta1)

 z_3end = z_cen + 59 + 82

 L1 = 152

 L3 = 244

 L5 = 213

 A = z_3end - L1

 B = x_3end

 C = np.sqrt(A**2 + B**2)

 alpha = math.acos((L3**2 + L5**2 - C**2)/(2*L3*L5))

 beta = math.acos((L3**2 + C**2 - L5**2)/(2*L3*C))

 gamma = math.atan2(A, B)

 psi = math.acos((L5**2 + C**2 - L3**2)/(2*L5*C))

 theta2 = -(beta + gamma)

 theta3 = np.pi - alpha

 theta4 = -(np.pi - np.absolute(theta2) - alpha)

20

 theta5 = -np.pi/2

 print("Thetas:")

 temp = np.array([theta1, theta2, theta3, theta4, theta5, theta6])

 print(temp.reshape(6,1))

 print("T Matrix")

 print(lab_fk(theta1, theta2, theta3, theta4, theta5, theta6))

 # ==#

 return lab_fk(theta1, theta2, theta3, theta4, theta5, theta6)

import numpy as np

Define the target (input) and measured positions

input1 = np.array([100, 100, 150, 90]) # Includes X, Y, Z, and Yaw

measured1 = np.array([110, 108, 150]) # Measured X, Y, Z positions

Extract X, Y, Z coordinates from input and measured arrays

i_x, i_y, i_z, _ = input1.flatten()

m_x, m_y, m_z = measured1.flatten()

Calculate scalar (Euclidean) error

scalar_error = np.sqrt((i_x - m_x)**2 + (i_y - m_y)**2 + (i_z - m_z)**2)

Display the result

scalar_error

21

Appendix B: Drawing Code
#!/usr/bin/env python

import sys

import copy

import time

import rospy

import numpy as np

import cv2

import matplotlib.pyplot as plt

from scipy.interpolate import CubicSpline

from skimage.morphology import skeletonize

from shapely.geometry import LineString, Polygon

from shapely.ops import unary_union

from final_header import *

from final_func import *

################ Pre-defined parameters and functions below ################

Constants

SPIN_RATE = 50 # Hz

PI = np.pi

UR3 home location (in radians)

home = [270 * PI / 180.0, -90 * PI / 180.0, 90 * PI / 180.0,

 -90 * PI / 180.0, -90 * PI / 180.0, 135 * PI / 180.0]

22

UR3 current position, using home position for initialization

current_position = copy.deepcopy(home)

thetas = [0.0] * 6

digital_in_0 = 0

analog_in_0 = 0.0

suction_on = True

suction_off = False

current_io_0 = False

current_position_set = False

Define image processing parameters

sheet_x_len = 186.7 # mm

sheet_y_len = 142.7 # mm

x_offset = 227.0 # mm

y_offset = 177.0 # mm

scale = 1.0

height_sheet = 10.15 # mm

height_free = height_sheet + 4 # mm

################ Callback Functions ################

def input_callback(msg):

 global digital_in_0

 digital_in_0 = msg.DIGIN & 1 # Only look at least significant bit

23

def position_callback(msg):

 global thetas, current_position, current_position_set

 thetas = msg.position[:6]

 current_position = copy.deepcopy(thetas)

 current_position_set = True

################ Control Functions ################

def gripper(pub_cmd, loop_rate, io_0):

 global SPIN_RATE, thetas, current_io_0, current_position

 error = 0

 spin_count = 0

 at_goal = False

 current_io_0 = io_0

 driver_msg = command()

 driver_msg.destination = current_position

 driver_msg.v = 1.0

 driver_msg.a = 1.0

 driver_msg.io_0 = io_0

 pub_cmd.publish(driver_msg)

 while not at_goal and not rospy.is_shutdown():

 if all(abs(thetas[i] - driver_msg.destination[i]) < 0.0005 for i in

range(6)):

 rospy.loginfo("Goal is reached!")

24

 at_goal = True

 loop_rate.sleep()

 spin_count += 1

 if spin_count > SPIN_RATE * 5:

 pub_cmd.publish(driver_msg)

 rospy.loginfo("Re-published driver_msg")

 spin_count = 0

 return error

def move_arm(pub_cmd, loop_rate, dest, vel, accel, move_type):

 global thetas, SPIN_RATE

 error = 0

 spin_count = 0

 at_goal = False

 driver_msg = command()

 driver_msg.destination = dest

 driver_msg.v = vel

 driver_msg.a = accel

 driver_msg.io_0 = current_io_0

 driver_msg.move_type = move_type # Move type ('J' for Joint, 'L' for

Linear)

 pub_cmd.publish(driver_msg)

 loop_rate.sleep()

25

 while not at_goal and not rospy.is_shutdown():

 if all(abs(thetas[i] - driver_msg.destination[i]) < 0.0005 for i in

range(6)):

 at_goal = True

 rospy.loginfo("Goal is reached!")

 loop_rate.sleep()

 spin_count += 1

 if spin_count > SPIN_RATE * 5:

 pub_cmd.publish(driver_msg)

 rospy.loginfo("Re-published driver_msg")

 spin_count = 0

 return error

################ Helper Functions ################

def lift_pen(pub_cmd, loop_rate, target_point, height, vel, accel):

 """Lift or lower the pen to a specified height."""

 x, y, _ = target_point

 new_z = height

 lifted_point = np.array([x, y, new_z])

 move_arm(pub_cmd, loop_rate, lifted_point.tolist(), vel, accel, 'L')

def draw_path(pub_command, loop_rate, path, vel, accel):

 """Draw a continuous path by following the given list of points."""

 if not path:

26

 return

 # Move to the start of the path (free position)

 try:

 start_xw, start_yw = IMG2W(path[0][1], path[0][0])

 start_free = lab_invk(start_xw, start_yw, height_free, 0)

 start_free = [float(val) for val in start_free]

 # Move to the start of the path (drawing position)

 start_drawing = lab_invk(start_xw, start_yw, height_sheet, 0)

 start_drawing = [float(val) for val in start_drawing]

 move_arm(pub_command, loop_rate, start_free, vel, accel, 'J')

 move_arm(pub_command, loop_rate, start_drawing, vel, accel, 'L')

 except ValueError as e:

 rospy.logwarn(f"Skipping invalid start point: {e}")

 return

 # Draw the path point by point

 for point in path:

 try:

 xw, yw = IMG2W(point[1], point[0])

 drawing_point = lab_invk(xw, yw, height_sheet, 0)

 drawing_point = [float(val) for val in drawing_point]

 move_arm(pub_command, loop_rate, drawing_point, vel, accel, 'L')

 except ValueError as e:

 rospy.logwarn(f"Skipping invalid keypoint during drawing: {e}")

def find_contours(image):

27

 """Find and preprocess contours from the given image."""

 if image is None:

 raise ValueError("Error: Input image is None. Check if the image file

exists and is valid.")

 # Convert to grayscale

 grey_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 # Apply Gaussian Blur to reduce noise

 blur = cv2.GaussianBlur(grey_img, (5, 5), 0)

 # Adaptive Thresholding to handle varying lighting conditions and reduce

noise

 thresh = cv2.adaptiveThreshold(blur, 255,

 cv2.ADAPTIVE_THRESH_GAUSSIAN_C,

 cv2.THRESH_BINARY_INV, 11, 2)

 # Morphological Operations to remove small noise and close gaps

 kernel = np.ones((3, 3), np.uint8)

 morph = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)

 morph = cv2.morphologyEx(morph, cv2.MORPH_CLOSE, kernel, iterations=1)

 # Edge Detection using Canny

 edges = cv2.Canny(morph, 50, 150, apertureSize=3)

 # Dilate and Erode to close gaps further

 edges = cv2.dilate(edges, kernel, iterations=1)

 edges = cv2.erode(edges, kernel, iterations=1)

28

 # Apply thinning to merge thick lines

 skeleton = skeletonize(edges > 0).astype(np.uint8) * 255

 # Find contours with hierarchy

 contours, hierarchy = cv2.findContours(skeleton, cv2.RETR_TREE,

cv2.CHAIN_APPROX_NONE)

 # Filter contours by area to remove noise

 min_contour_area = 100

 filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) >

min_contour_area]

 # Simplify contours using RDP algorithm with minimal simplification

 simplified_contours = []

 for cnt in filtered_contours:

 arc_len = cv2.arcLength(cnt, True)

 epsilon = 0.001 * arc_len # Very small epsilon to retain maximum

detail

 approx = cv2.approxPolyDP(cnt, epsilon, True)

 points = [tuple(point[0]) for point in approx]

 if len(points) > 1:

 interpolated = interpolate_contour(points, step=2)

 smoothed = smooth_path(interpolated, window_size=3)

 simplified_contours.append(smoothed)

 # Merge similar or close contours to prevent double outlines

 merged_contours = merge_close_contours(simplified_contours,

merge_threshold=10)

29

 # Further simplify paths using Shapely

 further_simplified_contours = []

 for contour in merged_contours:

 line = LineString(contour)

 # Simplify the path with a tolerance

 simplified_line = line.simplify(tolerance=1.0,

preserve_topology=False)

 if simplified_line.is_empty:

 continue

 # Extract points from the simplified LineString

 simplified_points = list(simplified_line.coords)

 # Convert to integer tuples

 simplified_points = [(int(x), int(y)) for x, y in simplified_points]

 # Apply adaptive sampling

 adaptively_sampled = adaptive_sample(simplified_points, max_step=10,

min_step=5) # Adjusted steps

 further_simplified_contours.append(adaptively_sampled)

 # Visualization for debugging

 visualization = cv2.cvtColor(skeleton, cv2.COLOR_GRAY2BGR)

 for contour in further_simplified_contours:

 cv2.polylines(visualization, [np.array(contour)], isClosed=True,

color=(0, 255, 0), thickness=1) # Green contours

 cv2.imshow('Filtered and Simplified Contours', visualization)

 cv2.waitKey(0)

 cv2.destroyAllWindows()

 return further_simplified_contours

30

def interpolate_contour(contour, step=2):

 """Interpolate additional points along a contour for higher detail."""

 interpolated = []

 for i in range(len(contour)):

 start_point = contour[i]

 end_point = contour[(i + 1) % len(contour)]

 distance = np.linalg.norm(np.array(end_point) -

np.array(start_point))

 num_steps = max(int(distance / step), 1)

 for j in range(num_steps):

 interpolated_point = (

 int(start_point[0] + (end_point[0] - start_point[0]) * j /

num_steps),

 int(start_point[1] + (end_point[1] - start_point[1]) * j /

num_steps)

)

 interpolated.append(interpolated_point)

 return interpolated

def smooth_path(path, window_size=3):

 """Apply a moving average to smooth the path points."""

 if len(path) < window_size:

 return path

 smoothed = []

 for i in range(len(path)):

 window = path[max(i - window_size, 0):min(i + window_size + 1,

len(path))]

 avg_x = int(np.mean([p[0] for p in window]))

 avg_y = int(np.mean([p[1] for p in window]))

31

 smoothed.append((avg_x, avg_y))

 return smoothed

def merge_close_contours(contours, merge_threshold=10):

 """Merge contours that are within a certain proximity to prevent double

outlines."""

 merged_contours = []

 while contours:

 base = contours.pop(0)

 to_merge = []

 for i, contour in enumerate(contours):

 # Calculate distance between the end of base and start of contour

 distance = np.linalg.norm(np.array(base[-1]) -

np.array(contour[0]))

 if distance < merge_threshold:

 base.extend(contour)

 to_merge.append(i)

 # Remove merged contours from the list

 for index in sorted(to_merge, reverse=True):

 contours.pop(index)

 merged_contours.append(base)

 return merged_contours

def adaptive_sample(path, max_step=10, min_step=5):

 """Adaptively sample points based on curvature."""

 if len(path) < 3:

 return path

 sampled = [path[0]]

32

 i = 1

 while i < len(path) - 1:

 p0 = np.array(path[i - 1])

 p1 = np.array(path[i])

 p2 = np.array(path[i + 1])

 # Calculate the angle between segments p0->p1 and p1->p2

 v1 = p1 - p0

 v2 = p2 - p1

 if np.linalg.norm(v1) == 0 or np.linalg.norm(v2) == 0:

 angle_deg = 0

 else:

 angle = np.arccos(

 np.clip(np.dot(v1, v2) / (np.linalg.norm(v1) *

np.linalg.norm(v2)), -1.0, 1.0)

)

 angle_deg = np.degrees(angle)

 # If the angle is significant, keep the point

 if angle_deg > 10: # Threshold angle to determine curvature

 sampled.append(tuple(p1))

 i += 1

 else:

 # Merge points in straight segments by skipping intermediate

points

 j = i + 1

 while j < len(path) - 1:

 p_prev = np.array(path[j - 1])

 p_curr = np.array(path[j])

33

 p_next = np.array(path[j + 1])

 if np.linalg.norm(p_curr - p_prev) == 0 or

np.linalg.norm(p_next - p_curr) == 0:

 angle_deg = 0

 else:

 v1 = p_curr - p_prev

 v2 = p_next - p_curr

 angle = np.arccos(

 np.clip(np.dot(v1, v2) / (np.linalg.norm(v1) *

np.linalg.norm(v2)), -1.0, 1.0)

)

 angle_deg = np.degrees(angle)

 if angle_deg > 10:

 break

 j += 1

 sampled.append(tuple(path[j]))

 i = j + 1

 sampled.append(path[-1])

 return sampled

def group_straight_lines(path, angle_threshold=10):

 """Group consecutive points that form a straight line."""

 if len(path) < 3:

 return [path]

 grouped = []

 current_group = [path[0], path[1]]

 for i in range(2, len(path)):

34

 p0 = np.array(current_group[-2])

 p1 = np.array(current_group[-1])

 p2 = np.array(path[i])

 v1 = p1 - p0

 v2 = p2 - p1

 # Calculate the angle between the two vectors

 if np.linalg.norm(v1) == 0 or np.linalg.norm(v2) == 0:

 angle_deg = 0

 else:

 angle = np.arccos(

 np.clip(np.dot(v1, v2) / (np.linalg.norm(v1) *

np.linalg.norm(v2)), -1.0, 1.0)

)

 angle_deg = np.degrees(angle)

 if angle_deg < angle_threshold:

 current_group.append(path[i])

 else:

 grouped.append(current_group)

 current_group = [path[i - 1], path[i]]

 grouped.append(current_group)

 return grouped

def IMG2W(row, col):

 """Transform image coordinates to world coordinates within valid

bounds."""

35

 if not (0 <= row < image_y_len and 0 <= col < image_x_len):

 raise ValueError(f"Invalid image coordinates: ({row}, {col}). Expected

range: "

 f"(0 <= row < {image_y_len}, 0 <= col <

{image_x_len})")

 # Map to world coordinates

 x = x_offset + col * scale

 y = y_offset + row * scale

 return x, y

def sort_contours_by_proximity(contours):

 """Sort contours based on proximity to minimize travel distance."""

 sorted_contours = []

 current_position = (x_offset, y_offset)

 while contours:

 closest_contour = min(

 contours,

 key=lambda c: np.linalg.norm(np.array(current_position) -

np.array(IMG2W(c[0][1], c[0][0])))

)

 sorted_contours.append(closest_contour)

 contours.remove(closest_contour)

 current_position = IMG2W(closest_contour[-1][1], closest_contour[-

1][0])

 return sorted_contours

36

def add_hatching(contour, spacing=10):

 """Add hatching lines within a contour to simulate shading."""

 # Create a mask for the contour

 mask = np.zeros((int(image_y_len), int(image_x_len)), dtype=np.uint8)

 cv2.drawContours(mask, [np.array(contour)], -1, 255, -1) # Filled

contour

 # Generate horizontal lines with specified spacing

 hatching = []

 for y in range(0, int(image_y_len), spacing):

 # Find the edges of the hatching line within the mask

 _, cols = cv2.findNonZero(mask[y:y+1, :]).T if

cv2.findNonZero(mask[y:y+1, :]) is not None else ([], [])

 if cols.size == 0:

 continue

 min_col = np.min(cols)

 max_col = np.max(cols)

 # Add start and end points of the hatching line

 hatching.append((min_col[0], y))

 hatching.append((max_col[0], y))

 return hatching

def draw_image(contours, pub_command, loop_rate, vel, accel):

 """Draw the image by sending commands to the UR3 robot."""

 # Sort contours to minimize travel distance

 sorted_contours = sort_contours_by_proximity(contours)

 rospy.loginfo("Sorted contours by proximity.")

37

 # Draw sorted contours on a blank image for verification

 visualization = np.zeros((int(image_y_len), int(image_x_len), 3),

dtype=np.uint8)

 for contour in sorted_contours:

 cv2.polylines(visualization, [np.array(contour)], isClosed=True,

color=(0, 0, 255), thickness=1) # Red contours

 cv2.imshow('Sorted Contours', visualization)

 cv2.waitKey(0)

 cv2.destroyAllWindows()

 for contour in sorted_contours:

 # Group points into straight lines

 grouped_segments = group_straight_lines(contour, angle_threshold=10)

 for segment in grouped_segments:

 if len(segment) < 2:

 continue

 # Move to the start of the segment (free position)

 try:

 start_xw, start_yw = IMG2W(segment[0][1], segment[0][0])

 start_free = lab_invk(start_xw, start_yw, height_free, 0)

 start_free = [float(val) for val in start_free]

 # Move to the start of the segment (drawing position)

 start_drawing = lab_invk(start_xw, start_yw, height_sheet,

0)

 start_drawing = [float(val) for val in start_drawing]

38

 move_arm(pub_command, loop_rate, start_free, vel, accel, 'J')

 move_arm(pub_command, loop_rate, start_drawing, vel, accel,

'L')

 except ValueError as e:

 rospy.logwarn(f"Skipping invalid start point: {e}")

 continue

 # Define the end of the segment

 try:

 end_xw, end_yw = IMG2W(segment[-1][1], segment[-1][0])

 end_drawing = lab_invk(end_xw, end_yw, height_sheet, 0)

 end_drawing = [float(val) for val in end_drawing]

 move_arm(pub_command, loop_rate, end_drawing, vel, accel,

'L')

 except ValueError as e:

 rospy.logwarn(f"Skipping invalid end point: {e}")

 continue

def main():

 global image_x_len, image_y_len, scale, x_offset, y_offset, height_sheet,

height_free

 # Initialize ROS node

 rospy.init_node('lab5node')

 # Initialize publisher for ur3/command with buffer size of 10

 pub_command = rospy.Publisher('ur3/command', command, queue_size=10)

39

 # Initialize subscribers

 rospy.Subscriber('ur3/position', position, position_callback)

 rospy.Subscriber('ur3/gripper_input', gripper_input, input_callback)

 # Wait until ROS is ready

 while not rospy.is_shutdown() and not current_position_set:

 rospy.loginfo("Waiting for initial position...")

 rospy.sleep(0.1)

 # Initialize the rate to publish to ur3/command

 loop_rate = rospy.Rate(SPIN_RATE)

 # Velocity and acceleration of the UR3 arm

 vel = 8.0

 accel = 8.0

 # Move to the home position

 move_arm(pub_command, loop_rate, home, vel, accel, 'J')

 ##========= Image Processing and Drawing =========##

 # Load the image

 image_path = './images/avengers7.jpg'

 image = cv2.imread(image_path)

 if image is None:

 raise ValueError(f"Image at path '{image_path}' could not be loaded.

Check the file path and format.")

40

 # Downscale the image to reduce processing time and noise/increase for

opposite

 # Controls effective resolution of frawn image

 max_dimension = 2000

 height, width = image.shape[:2]

 scaling_factor = max_dimension / float(max(height, width))

 image = cv2.resize(image, None, fx=scaling_factor, fy=scaling_factor,

interpolation=cv2.INTER_AREA)

 rospy.loginfo(f"Image downscaled by a factor of {scaling_factor:.2f} to

reduce noise and processing time.")

 # Flip and rotate image (landscape/portrait)

 image = cv2.flip(image, 0)

 image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)

 # Get image dimensions

 image_y_len = float(image.shape[0]) # Height

 image_x_len = float(image.shape[1]) # Width

 # Calculate scaling factor to fit the image within the sheet

 scale = min(sheet_x_len / image_x_len, sheet_y_len / image_y_len)

 rospy.loginfo(f"Calculated scale: {scale:.4f}")

 # Detect contours using the improved find_contours function

 rospy.loginfo("Detecting contours...")

 contours = find_contours(image)

 rospy.loginfo(f"Detected {len(contours)} contours after simplification

and filtering.")

41

 if not contours:

 rospy.logwarn("No contours detected. Exiting.")

 return

 # Sort contours by proximity to optimize drawing path

 rospy.loginfo("Sorting contours by proximity...")

 sorted_contours = sort_contours_by_proximity(contours)

 rospy.loginfo("Sorted contours.")

 # Draw the image

 rospy.loginfo("Starting to draw the image...")

 draw_image(sorted_contours, pub_command, loop_rate, vel, accel)

 rospy.loginfo("Image drawing completed.")

 # Return to the home position

 move_arm(pub_command, loop_rate, home, vel, accel, 'J')

 rospy.loginfo("Task Completed!")

 rospy.loginfo("Use Ctrl+C to exit program")

 rospy.spin()

if __name__ == '__main__':

 try:

 main()

 except rospy.ROSInterruptException:

 pass

