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AE 482 FINAL PROJECT: DRAWING 

WITH THE UR3 ROBOT  
Jadyn Chowdhury1   

Jadynnc2 | Partner - Chris Sun | TA - Lukas Zscherpel | Tuesday 3PM Section | 10/08/24 

AE 482: Introduction to Robotics, Urbana, IL, 61820, United States of America 

This lab explores the intersection of computer vision and robotics, enabling the UR3 robot 

to draw input images with precision. Using OpenCV and ROS, the system produced detailed 

outputs, winning the best-drawn image competition, and showcasing robotics' potential in 

automation and practical applications. 

I. Nomenclature 

𝑅𝑂𝑆   = Robot Operating System used to control the UR3 robot via Python scripts. 

𝑈𝑅3    = A collaborative robotic arm used in the lab. 

𝐹𝐾    = Forward Kinematics-calculating position and orientation of end-effector, given joint angles. 

𝑇    =  Transformation Matrix-4x4 matrix encoding both rotation and translation. 

𝑆   =  Screw Axis-six vectors describe rotation and translation of each joint, relative to base frame. 

𝜃    = Joint Angles- angles for each of the six joints in the UR3 robot. 

End-Effector   = The tool attached to the end of the robotic arm, equipped with a suction device. 

𝑇(𝜃)    =  Homogeneous Transformation Matrix- encodes both the orientation and position of end-effector. 

𝐼𝐾         =    Inverse Kinematics - joint angles to position end-effector at a specified location and orientation. 

𝐷𝑂𝐹    = Degrees of Freedom- six independent movements (or axes) available to the UR3 robot. 

𝑌𝑎𝑤    = Rotation around z-axis, representing the orientation of the end-effector in the horizontal plane. 

𝐸𝑙𝑏𝑜𝑤 − 𝑈𝑝   = IK solution where robot’s 'elbow' is oriented in an upward position to avoid obstacles.  

𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛  

𝑊𝑜𝑟𝑙𝑑 𝐹𝑟𝑎𝑚𝑒=  (w) Coordinate system where robot’s base is used as the origin for end-effector positions. 

𝐵𝑎𝑠𝑒 𝐹𝑟𝑎𝑚𝑒   =  (0) Local coordinate system fixed at base, to which joint angles and transformations are relative. 

II. Introduction 

The purpose of this project is to explore the practical applications of robotic systems in precision tasks such as drawing. 

Using the UR3 robot and ROS, we combine advanced robotics and image processing techniques to enable automated 

contour detection and replication. This lab demonstrates how robots can be programmed to interpret and replicate 

visual data, paving the way for innovative applications in fields such as manufacturing, art, and automation. 

 

The motivation behind this project is to gain hands-on experience with forward and inverse kinematics, transformation 

matrices, and real-world applications of image processing. By using OpenCV for image analysis and ROS for robot 

control, the lab integrates software and hardware solutions to solve a complex task: transforming an input image into 

precise, physical movements for the robot to recreate that image on paper. 

 

This project has real-world implications in domains where precision and automation are critical. For instance, contour-

based tasks such as engraving, painting, and surgical procedures can benefit from similar methodologies. By 

controlling the UR3 robot to draw, we demonstrate its potential to transition from abstract data interpretation to 

tangible outputs, showcasing the versatility and accuracy of modern robotic systems. 
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III.   Method 

The development of the robotic drawing pipeline required integrating image processing, robot kinematics, and 

execution logic to ensure precise replication of an input image. The final implementation was the result of iterative 

improvements, guided by the need to handle various levels of image complexity while maintaining scalability and 

efficiency. 

A. Contour Detection and Optimization 

After the image was resized (see section E), it underwent a series of preprocessing steps to extract meaningful 

contours. The find_contours function encapsulated these steps, starting with grayscale conversion and Gaussian 

blurring to reduce noise. Adaptive thresholding was then applied to segment the image into regions of interest, 

 
grey_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

blur = cv2.GaussianBlur(grey_img, (5, 5), 0) 

thresh = cv2.adaptiveThreshold(blur, 255, 

cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) 

 

Morphological operations, including opening and closing, further refined the segmented image by removing small 

noise and closing gaps in contours. The edges were then detected using the Canny algorithm, 

 
edges = cv2.Canny(morph, 50, 150, apertureSize=3) 

contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) 

 

While these steps extracted initial contours, they often contained noise or redundant points. The find_contours 

function applied additional processing, such as filtering contours by area, interpolating points for smoother curves, 

and merging close contours to prevent overlapping outlines. These functions were written for this specific use case, 

for example for filling in gaps between contour renditions,  

 
def interpolate_contour(contour, step=2): 

    """Interpolate additional points along a contour for higher 

detail.""" 

    interpolated = [] 

    for i in range(len(contour)): 

        start_point = contour[i] 

        end_point = contour[(i + 1) % len(contour)] 

        distance = np.linalg.norm(np.array(end_point) - 

np.array(start_point)) 

        num_steps = max(int(distance / step), 1) 

        for j in range(num_steps): 

            interpolated_point = ( 

int(start_point[0] + (end_point[0] - start_point[0])       

* j / num_steps), 

int(start_point[1] + (end_point[1] - start_point[1]) 

* j / num_steps) 

            ) 

            interpolated.append(interpolated_point) 

    return interpolated 
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Alongside this function, the other functions designed and implemented were: 

 

• smooth_path: Apply a moving average to smooth the path points. 

• merge_close_contours: Merge contours that are within a certain proximity to prevent 

double outlines. 

• adaptive_sample: Adaptively sample points based on curvature. Used vector cosine analysis 

to identify linear contours.  

• group_straight_lines: Group consecutive points that form a straight line. Allowed for 

just two points to be drawn rather than multiple in a line, greatly increasing speed of drawing.  

 

These optimizations ensured that the detected contours were both meaningful and manageable for the robot to 

replicate. 

B. Transforming Image Coordinates to World Coordinates 

The UR3 robot operates in a three-dimensional workspace, making it essential to map pixel-based image coordinates 

to its world frame. The IMG2W function performed this transformation, scaling the image coordinates based on the 

physical dimensions of the drawing sheet and applying offsets to align the image with the robot's starting position. 

 
def IMG2W(row, col): 

    x = x_offset + col * scale 

    y = y_offset + row * scale 

    return x, y 

 

This transformation allowed the robot to draw images of varying sizes and resolutions while ensuring the contours fit 

within the defined workspace. Parameters such as x_offset, y_offset, and scale were adjusted dynamically 

based on the input image's dimensions and the drawing sheet's size. 

C. Path Planning for Efficient Drawing 

After transforming the contours into world coordinates, the next step was to determine the most efficient path for the 

robot to follow. This involved sorting the contours to minimize travel distance between them, implemented in the 

sort_contours_by_proximity function, 

 
def sort_contours_by_proximity(contours): 

    sorted_contours = [] 

    current_position = (x_offset, y_offset) 

    while contours: 

        closest_contour = min( 

            contours, key=lambda c: 

np.linalg.norm(np.array(current_position) - np.array(IMG2W(c[0][1], 

c[0][0]))) 

        ) 

        sorted_contours.append(closest_contour) 

        contours.remove(closest_contour) 

        current_position = IMG2W(closest_contour[-1][1], 

closest_contour[-1][0]) 

    return sorted_contours 

This optimization reduced unnecessary movements, improving both the speed and accuracy of the drawing. 
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D. Robot Movements: Lifting and Drawing 

The robot's movements were managed using two distinct commands: MoveJ for curves and MoveL for precise linear 

movements. These were implemented in helper functions such as lift_pen and draw_path. 

 

The lift_pen function for example ensured the pen was raised to a safe height before moving to a new starting 

position, 

 
def lift_pen(pub_cmd, loop_rate, target_point, height, vel, accel): 

    x, y, _ = target_point 

    lifted_point = np.array([x, y, height]) 

    move_arm(pub_cmd, loop_rate, lifted_point.tolist(), vel, accel, 

'L') 

 

The draw_path function guided the pen along the contours, transforming each point into joint angles using inverse 

kinematics, 

 
def draw_path(pub_command, loop_rate, path, vel, accel): 

    for point in path: 

        xw, yw = IMG2W(point[1], point[0]) 

        drawing_point = lab_invk(xw, yw, height_sheet, 0) 

        move_arm(pub_command, loop_rate, drawing_point, vel, accel, 

'L') 

 

These functions allowed the robot to seamlessly transition between different segments of the drawing, maintaining 

precision throughout. The draw_image function conducted these movements using a try-catch structure to skip 

points that may be invalid and avoid the robot stopping due to an error.  

E. Integrating the Pipeline 

The final integration of all components occurred in the main function. This function initialized the ROS environment, 

loaded the image, processed it to extract and optimize contours, and executed the drawing (simplified for readability), 

 
def main(): 

    image = cv2.imread('./images/avengers7.jpg') 

    contours = find_contours(image) 

    sorted_contours = sort_contours_by_proximity(contours) 

    draw_image(sorted_contours, pub_command, loop_rate, vel, accel) 

 

By combining the preprocessing, coordinate transformation, and movement logic, this pipeline demonstrated the 

versatility and efficiency of the system. The results were evaluated using images of varying complexity, showcasing 

the scalability enabled by parameters.  

F. Hyperparameters 

The project relied on several hyperparameters to balance precision, efficiency, and scalability.  

 

Hyperparameter Purpose Impact Why It’s Important 

max_dimension Defines the 

largest 

dimension 

(width or 

height) of the 

image after 

scaling. 

Higher values retain finer details; 

lower values simplify contours 

for faster processing. 

Controls scalability and 

allows the system to adapt 

to images of varying 

complexity. 
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merge_threshold Distance 

threshold for 

merging close 

contours. 

Larger values combine more 

contours; smaller values preserve 

individual contours. 

Prevents redundant lines 

and ensures smooth, 

unified drawing paths. 

step (in 

interpolation) 

Defines the 

spacing 

between 

interpolated 

points along 

contours. 

Smaller steps create smoother 

curves; larger steps reduce detail 

but improve processing speed. 

Balances the need for 

detailed drawing with 

computational efficiency. 

window_size Window size 

for smoothing 

contours using 

a moving 

average. 

Larger values smooth paths more 

aggressively; smaller values 

retain finer details. 

Ensures contours are clean 

and free of noise, 

improving the robot's 

movement precision. 

angle_threshold Angle 

threshold for 

grouping 

points into 

straight lines. 

Lower thresholds group more 

points; higher thresholds 

preserve individual points. 

Helps optimize drawing 

paths by reducing 

unnecessary movements. 

scale Scales image 

coordinates to 

fit within the 

robot’s 

workspace. 

Adjusted dynamically based on 

max_dimension and the size of 

the drawing surface. 

Ensures that the image fits 

on the physical drawing 

area while maintaining the 

correct proportions. 

vel (velocity) Defines the 

speed of the 

robot arm 

during 

movements. 

Higher values increase speed but 

reduce precision; lower values 

ensure accurate execution of fine 

details. 

Balances execution time 

and drawing accuracy 

based on the task's 

requirements. 

accel (acceleration) Defines the 

acceleration of 

the robot arm 

during 

movements. 

Higher values allow quicker 

transitions; lower values prevent 

jerky movements that might 

compromise drawing quality. 

Ensures smooth and stable 

movements during 

drawing, especially for 

delicate tasks. 

Table 1: Hyperparameter 

SPIN_RATE was another parameter that controls the feedback response time of the robot, but it is not considered a 

hyperparameter as it was kept at 50Hz for all test cases. Focusing on one parameter in specific, max_dimension, 

is helpful in understanding their importance in scalability. The first step in the pipeline involved processing the input 

image to extract contours suitable for drawing. A key breakthrough in this phase was identifying max_dimension 

as a critical hyperparameter that directly influenced the quality of the drawing. This parameter controlled the scaling 

of the image, enabling the system to handle a wide range of image complexities. Larger values of max_dimension 

retained more detail, resulting in higher precision at the cost of increased processing time. Conversely, smaller values 

simplified the image, making it faster to process but less detailed. This was also directly correlated with drawing time.  

 

The image was initially resized using max_dimension to scale its largest dimension to this value while maintaining 

its aspect ratio, 
max_dimension = 2000  # Adjustable parameter for drawing quality 

scaling_factor = max_dimension / float(max(height, width)) 

image = cv2.resize(image, None, fx=scaling_factor, fy=scaling_factor, 

interpolation=cv2.INTER_AREA) 
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This approach was inspired by the idea that bringing an image closer (effectively increasing max_dimension) 

reveals finer details, while moving it further away (decreasing max_dimension) hides nuances. Take this example 

image, 

 

 

Figure 1: Ironman Reference Image 

 

Before the image is drawn, the detected key points are shown, then the image is processed and the outline of the image 

to be drawn is shown. This allowed for verification and improvements to be made without the need for waiting for the 

robot to draw the whole image. Running this figure 1 with a max_dimension of 500 yields the following,  

 
Image downscaled by a factor of 0.62 to reduce noise and processing 

time. 

Calculated scale: 0.2854 

Detecting contours... 

Detected 75 contours 

 

 

Figure 2: Figure 1 detected key point contours (dim 500) 
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Figure 3: Figure 1 to be drawn (dim 500) 

 

Evidently there are significant details missing. Now setting the dimension value to 2000,  

 
Image downscaled by a factor of 2.5 to increase details. 

Calculated scale: 0.0713 

Detecting contours... 

Detected 552 contours 

 

 

Figure 4: Figure 1 detected key point contours (dim 2000) 
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Figure 5: Figure 1 image to be drawn (dim 2000) 

It becomes quickly apparent that leveraging this hyperparameter enables detail control. That being said, the number 

of contours has more than quadrupled, this adds significant drawing time to the image. It is also important to highlight 

that there are images where additional detail becomes redundant whilst still taking a significant amount of time to be 

drawn. It is important to establish the value dependent on the use case.  

IV.    Results 

The results of this project demonstrate the effectiveness of the developed pipeline in enabling the UR3 robot to 

replicate input images as precise drawings. By carefully tuning hyperparameters in Tasks 1 and 2, the robot 

successfully produced visually accurate and aesthetically pleasing outputs. The success of the robot in the final 

demonstration is underscored by winning the voting competition for the best-drawn image. A pen was chosen as the 

drawing instrument to best reflect the fine details.  

 

Figure 6: Pen in robot end effector 
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A. Task 1: Results and Hyperparameter Evaluation 

In Task 1, the hyperparameters were adjusted to prioritize speed over detail, reflecting the need for rapid processing. 

The chosen settings reduced the complexity of the image while ensuring that essential features were preserved.  

Hyperparameter Value Purpose 

max_dimension 600 Reduced to simplify image details, prioritizing speed over precision. 

merge_threshold 15 Increased to merge nearby contours aggressively, reducing redundant drawing 

paths. 

step (in 

interpolation) 

5 Larger steps reduced the number of interpolated points, accelerating the drawing 

process. 

window_size 2 Smaller smoothing window retained enough detail to avoid oversmoothing. 

angle_threshold 15° Larger threshold grouped more points into straight lines, optimizing movement 

paths. 

vel (velocity) 12 Increased speed of arm movement for faster execution. 

accel (acceleration) 10 Increased acceleration for rapid transitions between points. 

Table 2: Task 1 hyperparameters 

The result of Task 1 is shown below, highlighting the robot’s ability to produce a simplified yet clear representation 

of the input image. While the output lacked the finer details seen in later tasks, it demonstrated the effectiveness of a 

speed-prioritized approach, completing the drawing in less than 10 minutes as per the task specifications.  

 

Figure 7: Task 1 image 
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B. Task 2: Results and Hyperparameter Evaluation 

In Task 2, the focus shifted to achieving a balance between precision and efficiency.  

 

Hyperparameter Value Purpose 

max_dimension 2000 Higher value retained finer image details for more precise contour 

detection and drawing. 

merge_threshold 10 Moderate threshold preserved individual contours, ensuring accurate path 

tracing. 

step (in 

interpolation) 

2 Smaller steps enhanced contour smoothness and drawing detail. 

window_size 3 Balanced smoothing removed noise while preserving fine details in 

contours. 

angle_threshold 10° Stricter threshold reduced grouping, enabling detailed reproduction of 

curved paths. 

vel (velocity) 8 Reduced speed ensured higher accuracy in executing fine details. 

accel 
(acceleration) 

8 Moderate acceleration avoided jerky movements, ensuring smooth 

transitions. 

Figure 8: Task 2 hyperparameters 

The final image drawn was chosen due to its complexity being able to showcase our algorithm, and since it would be 

recognizable and draw attention from voters. The image drawn by the robot was a clear and precise reproduction of 

the input, winning the competition for the best-drawn image. This success highlights the robustness of the pipeline 

and the effectiveness of the hyperparameter tuning. 

 

 

Figure 9: Reference and Drawn task 2 image 
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The key points and contours for the submitted image are visualized below, showing the processed data that guided the 

robot’s movements. 

 

 

Figure 10: Submitted image contours (rotated as it is drawn portrait) 

 

Figure 11: Submitted image to be drawn 
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C. Overall Performance 

In addition to the submitted image, the robot performed well on a variety of other test images, showcasing its 

versatility. The system’s scalability, achieved through the adjustable hyperparameters, enabled it to handle images of 

varying complexity. This adaptability was a key factor in the success of the project, allowing the pipeline to be fine-

tuned for specific tasks and requirements. 

 

Figure 12: Other drawn images 

The results demonstrate that the robot not only met but exceeded expectations, successfully integrating image 

processing and robotic control to achieve a high level of performance. The voting competition win further validates 

the quality of the final implementation.  

D. Self-Evaluation  

Throughout the process of development and testing there were continuous needs to go back and reapproach and even 

restart. This involved choosing different contour mapping algorithms, adding and removing helper functions, choosing 

a pen or sharpie and designing approaches that were based on intuition (for example the scaling mechanism for detail). 

The best evaluator for this progress was the contour map and final image drawn plots. It allowed for the comparison 

of different algorithms and hyperparameter tuning without the need to wait for the robot to draw some images.  
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V.   Conclusion  

The success of this project demonstrates the effectiveness of combining advanced image processing techniques with 

robotic kinematics to achieve precise and scalable task execution. Through iterative development and careful 

hyperparameter tuning, the UR3 robot was able to replicate input images as detailed and accurate drawings, 

culminating in a winning performance in the voting competition for the best-drawn image. 

 

Key to this success was the ability to dynamically adjust parameters like max_dimension to balance detail and 

speed, ensuring the pipeline could handle a wide range of image complexities. In addition the implementation of a 

series of functions that enabled improvements of the raw key point data allowed for the most optimal placement of 

points that the robot could draw. This adaptability highlights the robustness of the system and its potential for 

application in fields such as manufacturing, art, and automation. 

 

The project also underscored the importance of a structured development approach, integrating preprocessing, 

transformation, and execution phases seamlessly. Overall, this lab provided valuable insights into real-world robotic 

applications, blending technical precision with creative problem-solving to achieve outstanding results. 

A. Reflection on the Labs 

The lab sequence was an incredibly rewarding experience. As a computer science major, I appreciated the opportunity 

to apply what I have learned in a hands-on setting, exploring how programming and robotics intersect. The Tower of 

Hanoi lab was particularly exciting, as it allowed me to see the recursive algorithm I had studied extensively come to 

life through the robot’s movements. 

 

Lab 5 stood out for its integration of computer vision and robotics, which was both challenging and inspiring. Using 

OpenCV to detect objects and map pixel coordinates to the world frame sparked ideas about real-world applications, 

such as self-driving cars and automation processes. 

 

The final project lab was the culmination of all the skills learned, combining computer vision, kinematics, and drawing 

execution. Seeing the robot accurately replicate an image and winning the best-drawn image competition was 

immensely satisfying. However, accessing workstations was a challenge, with labs overcrowded even at 2am. I 

recommend reducing class sizes, adding more stations, or introducing a scheduling system to address this issue. 

Despite this, the labs were highly enjoyable and instrumental in sparking further interest in robotics and computer 

vision. 
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VIII. Appendices  

Appendix A: Kinematics Code 
#!/usr/bin/env python 

import numpy as np 

import math 

from scipy.linalg import expm 

from lab4_header import * 

 

""" 

Use 'expm' for matrix exponential. 

Angles are in radian, distance are in meters. 

""" 

def Get_MS(): 

  # =================== Your code starts here ====================# 

  # Fill in the correct values for a1~6 and q1~6, as well as the M matrix 

  s1 = np.array([[0],[0],[1],[150],[150],[0]]) 

  s2 = np.array([[0],[1],[0],[-162],[0],[-150]]) 

  s3 = np.array([[0],[1],[0],[-162],[0],[94]]) 

  s4 = np.array([[0],[1],[0],[-162],[0],[307]]) 

  s5 = np.array([[1],[0],[0],[0],[162],[-260]]) 

  s6 = np.array([[0],[1],[0],[-162],[0],[390]]) 

  S = np.column_stack([s1, s2, s3, s4, s5, s6]) 

 

 

  M = np.array([[0,-1,0,390],[0,0,-1, 401],[1,0,0,215.5],[0,0,0,1]]) 

 

 

 

  # ==============================================================# 
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  return M, S 

 

 

def skew_symmetric_6x1(screw_axis): 

    """ 

    Create the skew-symmetric matrix 

    """ 

    omega = screw_axis[:3] 

    v = screw_axis[3:] 

 

    omega_skew = np.array([[0, -omega[2], omega[1]], 

                           [omega[2], 0, -omega[0]], 

                           [-omega[1], omega[0], 0]]) 

 

    skew_matrix = np.zeros((4, 4)) 

    skew_matrix[:3, :3] = omega_skew 

    skew_matrix[:3, 3] = v 

 

    return skew_matrix 

 

def calculate_T01(S, M, theta): 

    """ 

    Calculate the pose T_01 

 

    Parameters: 

    - S: 6xN srcre matrix 

    - M: 4x4 initial config matrix 

    - theta: 1xN the joint angles 
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    Returns: 

    - T_01: 4x4 transformation matrix 

    """ 

    T = np.eye(4) 

 

    for i in range(S.shape[1]): 

        screw_axis = S[:, i] 

        skew_matrix = skew_symmetric_6x1(screw_axis) 

        exp_S_theta = expm(skew_matrix * theta[i]) 

        T = np.dot(T, exp_S_theta) 

 

    T_01 = np.dot(T, M) 

 

    return T_01 

 

""" 

Function that calculates encoder numbers for each motor 

""" 

def lab_fk(theta1, theta2, theta3, theta4, theta5, theta6): 

 

  # Initialize the return_value 

  return_value = [None, None, None, None, None, None] 

 

  print("Foward kinematics calculated:\n") 

 

  # =================== Your code starts here ====================# 

  M, S = Get_MS() 

 

  theta = np.array([theta1, theta2, theta3, theta4, theta5, theta6 ]) 
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  T = calculate_T01(S, M, theta) 

 

 

 

 

 

  # ==============================================================# 

 

  return_value[0] = theta1 + PI 

  return_value[1] = theta2 

  return_value[2] = theta3 

  return_value[3] = theta4 - (0.5*PI) 

  return_value[4] = theta5 

  return_value[5] = theta6 

 

  return return_value 

 

""" 

Function that calculates an elbow up Inverse Kinematic solution for the UR3 

""" 

def lab_invk(xWgrip, yWgrip, zWgrip, yaw_WgripDegree): 

  # =================== Your code starts here ====================# 

 

  # Convert degrees to radians 

  yaw_WgripDegree_rad = np.deg2rad(yaw_WgripDegree) 

 

  # Linear change from corner to centre 

  x_grip = xWgrip + 150 
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  y_grip = yWgrip - 150 

  z_grip = zWgrip - 10 

 

  x_cen = x_grip - 53.5*np.cos(yaw_WgripDegree_rad) 

  y_cen = y_grip - 53.5*np.sin(yaw_WgripDegree_rad) 

  z_cen = z_grip 

 

  phi = math.atan2(y_cen, x_cen) 

  theta1 = phi - math.asin(110/(np.sqrt(x_cen**2 + y_cen**2))) 

 

  theta6 = np.pi/2 + theta1 - yaw_WgripDegree_rad 

 

  x_3end = x_cen + (27 + 83)*np.sin(theta1) - 83*np.cos(theta1) 

  y_3end = y_cen - (27 + 83)*np.cos(theta1) - 83*np.sin(theta1) 

  z_3end = z_cen + 59 + 82 

 

  L1 = 152 

  L3 = 244 

  L5 = 213 

  A = z_3end - L1 

  B = x_3end 

  C = np.sqrt(A**2 + B**2) 

  alpha = math.acos((L3**2 + L5**2 - C**2)/(2*L3*L5)) 

  beta = math.acos((L3**2 + C**2 - L5**2)/(2*L3*C)) 

  gamma = math.atan2(A, B) 

  psi = math.acos((L5**2 + C**2 - L3**2)/(2*L5*C)) 

  theta2 = -(beta + gamma) 

  theta3 = np.pi - alpha 

  theta4 = -(np.pi - np.absolute(theta2) - alpha) 
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  theta5 = -np.pi/2 

 

  print("Thetas:") 

  temp = np.array([theta1, theta2, theta3, theta4, theta5, theta6]) 

  print(temp.reshape(6,1)) 

 

  print("T Matrix") 

  print(lab_fk(theta1, theta2, theta3, theta4, theta5, theta6)) 

  # ==============================================================# 

  return lab_fk(theta1, theta2, theta3, theta4, theta5, theta6) 

 

import numpy as np 

 

# Define the target (input) and measured positions 

input1 = np.array([100, 100, 150, 90])  # Includes X, Y, Z, and Yaw 

measured1 = np.array([110, 108, 150])   # Measured X, Y, Z positions 

 

# Extract X, Y, Z coordinates from input and measured arrays 

i_x, i_y, i_z, _ = input1.flatten() 

m_x, m_y, m_z = measured1.flatten() 

 

# Calculate scalar (Euclidean) error 

scalar_error = np.sqrt((i_x - m_x)**2 + (i_y - m_y)**2 + (i_z - m_z)**2) 

 

# Display the result 

scalar_error 
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Appendix B: Drawing Code 
#!/usr/bin/env python 

 

import sys 

import copy 

import time 

import rospy 

 

import numpy as np 

import cv2 

import matplotlib.pyplot as plt 

from scipy.interpolate import CubicSpline 

from skimage.morphology import skeletonize 

from shapely.geometry import LineString, Polygon 

from shapely.ops import unary_union 

 

from final_header import * 

from final_func import * 

 

################ Pre-defined parameters and functions below ################ 

 

# Constants 

SPIN_RATE = 50  # Hz 

PI = np.pi 

 

# UR3 home location (in radians) 

home = [270 * PI / 180.0, -90 * PI / 180.0, 90 * PI / 180.0, 

        -90 * PI / 180.0, -90 * PI / 180.0, 135 * PI / 180.0] 
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# UR3 current position, using home position for initialization 

current_position = copy.deepcopy(home) 

 

thetas = [0.0] * 6 

 

digital_in_0 = 0 

analog_in_0 = 0.0 

 

suction_on = True 

suction_off = False 

 

current_io_0 = False 

current_position_set = False 

 

# Define image processing parameters 

sheet_x_len = 186.7  # mm 

sheet_y_len = 142.7  # mm 

x_offset = 227.0      # mm 

y_offset = 177.0      # mm 

scale = 1.0 

height_sheet = 10.15  # mm 

height_free = height_sheet + 4  # mm 

 

################ Callback Functions ################ 

 

def input_callback(msg): 

    global digital_in_0 

    digital_in_0 = msg.DIGIN & 1  # Only look at least significant bit 
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def position_callback(msg): 

    global thetas, current_position, current_position_set 

 

    thetas = msg.position[:6] 

    current_position = copy.deepcopy(thetas) 

    current_position_set = True 

 

################ Control Functions ################ 

 

def gripper(pub_cmd, loop_rate, io_0): 

    global SPIN_RATE, thetas, current_io_0, current_position 

 

    error = 0 

    spin_count = 0 

    at_goal = False 

 

    current_io_0 = io_0 

 

    driver_msg = command() 

    driver_msg.destination = current_position 

    driver_msg.v = 1.0 

    driver_msg.a = 1.0 

    driver_msg.io_0 = io_0 

    pub_cmd.publish(driver_msg) 

 

    while not at_goal and not rospy.is_shutdown(): 

        if all(abs(thetas[i] - driver_msg.destination[i]) < 0.0005 for i in 

range(6)): 

            rospy.loginfo("Goal is reached!") 



24 

 

            at_goal = True 

 

        loop_rate.sleep() 

 

        spin_count += 1 

        if spin_count > SPIN_RATE * 5: 

            pub_cmd.publish(driver_msg) 

            rospy.loginfo("Re-published driver_msg") 

            spin_count = 0 

 

    return error 

 

def move_arm(pub_cmd, loop_rate, dest, vel, accel, move_type): 

    global thetas, SPIN_RATE 

 

    error = 0 

    spin_count = 0 

    at_goal = False 

 

    driver_msg = command() 

    driver_msg.destination = dest 

    driver_msg.v = vel 

    driver_msg.a = accel 

    driver_msg.io_0 = current_io_0 

    driver_msg.move_type = move_type  # Move type ('J' for Joint, 'L' for 

Linear) 

    pub_cmd.publish(driver_msg) 

 

    loop_rate.sleep() 
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    while not at_goal and not rospy.is_shutdown(): 

        if all(abs(thetas[i] - driver_msg.destination[i]) < 0.0005 for i in 

range(6)): 

            at_goal = True 

            rospy.loginfo("Goal is reached!") 

 

        loop_rate.sleep() 

 

        spin_count += 1 

        if spin_count > SPIN_RATE * 5: 

            pub_cmd.publish(driver_msg) 

            rospy.loginfo("Re-published driver_msg") 

            spin_count = 0 

 

    return error 

 

################ Helper Functions ################ 

 

def lift_pen(pub_cmd, loop_rate, target_point, height, vel, accel): 

    """Lift or lower the pen to a specified height.""" 

    x, y, _ = target_point 

    new_z = height 

    lifted_point = np.array([x, y, new_z]) 

    move_arm(pub_cmd, loop_rate, lifted_point.tolist(), vel, accel, 'L') 

 

def draw_path(pub_command, loop_rate, path, vel, accel): 

    """Draw a continuous path by following the given list of points.""" 

    if not path: 
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        return 

 

    # Move to the start of the path (free position) 

    try: 

        start_xw, start_yw = IMG2W(path[0][1], path[0][0]) 

        start_free = lab_invk(start_xw, start_yw, height_free, 0) 

        start_free = [float(val) for val in start_free] 

 

        # Move to the start of the path (drawing position) 

        start_drawing = lab_invk(start_xw, start_yw, height_sheet, 0) 

        start_drawing = [float(val) for val in start_drawing] 

 

        move_arm(pub_command, loop_rate, start_free, vel, accel, 'J') 

        move_arm(pub_command, loop_rate, start_drawing, vel, accel, 'L') 

    except ValueError as e: 

        rospy.logwarn(f"Skipping invalid start point: {e}") 

        return 

 

    # Draw the path point by point 

    for point in path: 

        try: 

            xw, yw = IMG2W(point[1], point[0]) 

            drawing_point = lab_invk(xw, yw, height_sheet, 0) 

            drawing_point = [float(val) for val in drawing_point] 

            move_arm(pub_command, loop_rate, drawing_point, vel, accel, 'L') 

        except ValueError as e: 

            rospy.logwarn(f"Skipping invalid keypoint during drawing: {e}") 

 

def find_contours(image): 
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    """Find and preprocess contours from the given image.""" 

    if image is None: 

        raise ValueError("Error: Input image is None. Check if the image file 

exists and is valid.") 

 

    # Convert to grayscale 

    grey_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

 

    # Apply Gaussian Blur to reduce noise 

    blur = cv2.GaussianBlur(grey_img, (5, 5), 0) 

 

    # Adaptive Thresholding to handle varying lighting conditions and reduce 

noise 

    thresh = cv2.adaptiveThreshold(blur, 255, 

                                   cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 

                                   cv2.THRESH_BINARY_INV, 11, 2) 

 

    # Morphological Operations to remove small noise and close gaps 

    kernel = np.ones((3, 3), np.uint8) 

    morph = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) 

    morph = cv2.morphologyEx(morph, cv2.MORPH_CLOSE, kernel, iterations=1) 

 

    # Edge Detection using Canny 

    edges = cv2.Canny(morph, 50, 150, apertureSize=3) 

 

    # Dilate and Erode to close gaps further 

    edges = cv2.dilate(edges, kernel, iterations=1) 

    edges = cv2.erode(edges, kernel, iterations=1) 
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    # Apply thinning to merge thick lines 

    skeleton = skeletonize(edges > 0).astype(np.uint8) * 255 

 

    # Find contours with hierarchy 

    contours, hierarchy = cv2.findContours(skeleton, cv2.RETR_TREE, 

cv2.CHAIN_APPROX_NONE) 

 

    # Filter contours by area to remove noise 

    min_contour_area = 100 

    filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > 

min_contour_area] 

 

    # Simplify contours using RDP algorithm with minimal simplification 

    simplified_contours = [] 

    for cnt in filtered_contours: 

        arc_len = cv2.arcLength(cnt, True) 

        epsilon = 0.001 * arc_len  # Very small epsilon to retain maximum 

detail 

        approx = cv2.approxPolyDP(cnt, epsilon, True) 

        points = [tuple(point[0]) for point in approx] 

        if len(points) > 1: 

            interpolated = interpolate_contour(points, step=2) 

            smoothed = smooth_path(interpolated, window_size=3) 

            simplified_contours.append(smoothed) 

 

    # Merge similar or close contours to prevent double outlines 

    merged_contours = merge_close_contours(simplified_contours, 

merge_threshold=10) 
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    # Further simplify paths using Shapely 

    further_simplified_contours = [] 

    for contour in merged_contours: 

        line = LineString(contour) 

        # Simplify the path with a tolerance 

        simplified_line = line.simplify(tolerance=1.0, 

preserve_topology=False) 

        if simplified_line.is_empty: 

            continue 

        # Extract points from the simplified LineString 

        simplified_points = list(simplified_line.coords) 

        # Convert to integer tuples 

        simplified_points = [(int(x), int(y)) for x, y in simplified_points] 

        # Apply adaptive sampling 

        adaptively_sampled = adaptive_sample(simplified_points, max_step=10, 

min_step=5)  # Adjusted steps 

        further_simplified_contours.append(adaptively_sampled) 

 

    # Visualization for debugging 

    visualization = cv2.cvtColor(skeleton, cv2.COLOR_GRAY2BGR) 

    for contour in further_simplified_contours: 

        cv2.polylines(visualization, [np.array(contour)], isClosed=True, 

color=(0, 255, 0), thickness=1)  # Green contours 

    cv2.imshow('Filtered and Simplified Contours', visualization) 

    cv2.waitKey(0) 

    cv2.destroyAllWindows() 

 

    return further_simplified_contours 
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def interpolate_contour(contour, step=2): 

    """Interpolate additional points along a contour for higher detail.""" 

    interpolated = [] 

    for i in range(len(contour)): 

        start_point = contour[i] 

        end_point = contour[(i + 1) % len(contour)] 

        distance = np.linalg.norm(np.array(end_point) - 

np.array(start_point)) 

        num_steps = max(int(distance / step), 1) 

        for j in range(num_steps): 

            interpolated_point = ( 

                int(start_point[0] + (end_point[0] - start_point[0]) * j / 

num_steps), 

                int(start_point[1] + (end_point[1] - start_point[1]) * j / 

num_steps) 

            ) 

            interpolated.append(interpolated_point) 

    return interpolated 

 

def smooth_path(path, window_size=3): 

    """Apply a moving average to smooth the path points.""" 

    if len(path) < window_size: 

        return path 

    smoothed = [] 

    for i in range(len(path)): 

        window = path[max(i - window_size, 0):min(i + window_size + 1, 

len(path))] 

        avg_x = int(np.mean([p[0] for p in window])) 

        avg_y = int(np.mean([p[1] for p in window])) 
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        smoothed.append((avg_x, avg_y)) 

    return smoothed 

 

def merge_close_contours(contours, merge_threshold=10): 

    """Merge contours that are within a certain proximity to prevent double 

outlines.""" 

    merged_contours = [] 

    while contours: 

        base = contours.pop(0) 

        to_merge = [] 

        for i, contour in enumerate(contours): 

            # Calculate distance between the end of base and start of contour 

            distance = np.linalg.norm(np.array(base[-1]) - 

np.array(contour[0])) 

            if distance < merge_threshold: 

                base.extend(contour) 

                to_merge.append(i) 

        # Remove merged contours from the list 

        for index in sorted(to_merge, reverse=True): 

            contours.pop(index) 

        merged_contours.append(base) 

    return merged_contours 

 

def adaptive_sample(path, max_step=10, min_step=5): 

    """Adaptively sample points based on curvature.""" 

    if len(path) < 3: 

        return path 

 

    sampled = [path[0]] 
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    i = 1 

    while i < len(path) - 1: 

        p0 = np.array(path[i - 1]) 

        p1 = np.array(path[i]) 

        p2 = np.array(path[i + 1]) 

 

        # Calculate the angle between segments p0->p1 and p1->p2 

        v1 = p1 - p0 

        v2 = p2 - p1 

        if np.linalg.norm(v1) == 0 or np.linalg.norm(v2) == 0: 

            angle_deg = 0 

        else: 

            angle = np.arccos( 

                np.clip(np.dot(v1, v2) / (np.linalg.norm(v1) * 

np.linalg.norm(v2)), -1.0, 1.0) 

            ) 

            angle_deg = np.degrees(angle) 

 

        # If the angle is significant, keep the point 

        if angle_deg > 10:  # Threshold angle to determine curvature 

            sampled.append(tuple(p1)) 

            i += 1 

        else: 

            # Merge points in straight segments by skipping intermediate 

points 

            j = i + 1 

            while j < len(path) - 1: 

                p_prev = np.array(path[j - 1]) 

                p_curr = np.array(path[j]) 
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                p_next = np.array(path[j + 1]) 

                if np.linalg.norm(p_curr - p_prev) == 0 or 

np.linalg.norm(p_next - p_curr) == 0: 

                    angle_deg = 0 

                else: 

                    v1 = p_curr - p_prev 

                    v2 = p_next - p_curr 

                    angle = np.arccos( 

                        np.clip(np.dot(v1, v2) / (np.linalg.norm(v1) * 

np.linalg.norm(v2)), -1.0, 1.0) 

                    ) 

                    angle_deg = np.degrees(angle) 

                if angle_deg > 10: 

                    break 

                j += 1 

            sampled.append(tuple(path[j])) 

            i = j + 1 

    sampled.append(path[-1]) 

    return sampled 

 

def group_straight_lines(path, angle_threshold=10): 

    """Group consecutive points that form a straight line.""" 

    if len(path) < 3: 

        return [path] 

 

    grouped = [] 

    current_group = [path[0], path[1]] 

 

    for i in range(2, len(path)): 
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        p0 = np.array(current_group[-2]) 

        p1 = np.array(current_group[-1]) 

        p2 = np.array(path[i]) 

 

        v1 = p1 - p0 

        v2 = p2 - p1 

 

        # Calculate the angle between the two vectors 

        if np.linalg.norm(v1) == 0 or np.linalg.norm(v2) == 0: 

            angle_deg = 0 

        else: 

            angle = np.arccos( 

                np.clip(np.dot(v1, v2) / (np.linalg.norm(v1) * 

np.linalg.norm(v2)), -1.0, 1.0) 

            ) 

            angle_deg = np.degrees(angle) 

 

        if angle_deg < angle_threshold: 

            current_group.append(path[i]) 

        else: 

            grouped.append(current_group) 

            current_group = [path[i - 1], path[i]] 

 

    grouped.append(current_group) 

    return grouped 

 

def IMG2W(row, col): 

    """Transform image coordinates to world coordinates within valid 

bounds.""" 
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    if not (0 <= row < image_y_len and 0 <= col < image_x_len): 

        raise ValueError(f"Invalid image coordinates: ({row}, {col}). Expected 

range: " 

                         f"(0 <= row < {image_y_len}, 0 <= col < 

{image_x_len})") 

 

    # Map to world coordinates 

    x = x_offset + col * scale 

    y = y_offset + row * scale 

 

    return x, y 

 

def sort_contours_by_proximity(contours): 

    """Sort contours based on proximity to minimize travel distance.""" 

    sorted_contours = [] 

    current_position = (x_offset, y_offset) 

 

    while contours: 

        closest_contour = min( 

            contours, 

            key=lambda c: np.linalg.norm(np.array(current_position) - 

np.array(IMG2W(c[0][1], c[0][0]))) 

        ) 

        sorted_contours.append(closest_contour) 

        contours.remove(closest_contour) 

        current_position = IMG2W(closest_contour[-1][1], closest_contour[-

1][0]) 

 

    return sorted_contours 
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def add_hatching(contour, spacing=10): 

    """Add hatching lines within a contour to simulate shading.""" 

    # Create a mask for the contour 

    mask = np.zeros((int(image_y_len), int(image_x_len)), dtype=np.uint8) 

    cv2.drawContours(mask, [np.array(contour)], -1, 255, -1)  # Filled 

contour 

 

    # Generate horizontal lines with specified spacing 

    hatching = [] 

    for y in range(0, int(image_y_len), spacing): 

        # Find the edges of the hatching line within the mask 

        _, cols = cv2.findNonZero(mask[y:y+1, :]).T if 

cv2.findNonZero(mask[y:y+1, :]) is not None else ([], []) 

        if cols.size == 0: 

            continue 

        min_col = np.min(cols) 

        max_col = np.max(cols) 

        # Add start and end points of the hatching line 

        hatching.append((min_col[0], y)) 

        hatching.append((max_col[0], y)) 

 

    return hatching 

 

def draw_image(contours, pub_command, loop_rate, vel, accel): 

    """Draw the image by sending commands to the UR3 robot.""" 

    # Sort contours to minimize travel distance 

    sorted_contours = sort_contours_by_proximity(contours) 

    rospy.loginfo("Sorted contours by proximity.") 
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    # Draw sorted contours on a blank image for verification 

    visualization = np.zeros((int(image_y_len), int(image_x_len), 3), 

dtype=np.uint8) 

    for contour in sorted_contours: 

        cv2.polylines(visualization, [np.array(contour)], isClosed=True, 

color=(0, 0, 255), thickness=1)  # Red contours 

    cv2.imshow('Sorted Contours', visualization) 

    cv2.waitKey(0) 

    cv2.destroyAllWindows() 

 

    for contour in sorted_contours: 

        # Group points into straight lines 

        grouped_segments = group_straight_lines(contour, angle_threshold=10) 

 

        for segment in grouped_segments: 

            if len(segment) < 2: 

                continue 

 

            # Move to the start of the segment (free position) 

            try: 

                start_xw, start_yw = IMG2W(segment[0][1], segment[0][0]) 

                start_free = lab_invk(start_xw, start_yw, height_free, 0) 

                start_free = [float(val) for val in start_free] 

 

                # Move to the start of the segment (drawing position) 

                start_drawing = lab_invk(start_xw, start_yw, height_sheet, 

0) 

                start_drawing = [float(val) for val in start_drawing] 
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                move_arm(pub_command, loop_rate, start_free, vel, accel, 'J') 

                move_arm(pub_command, loop_rate, start_drawing, vel, accel, 

'L') 

            except ValueError as e: 

                rospy.logwarn(f"Skipping invalid start point: {e}") 

                continue 

 

            # Define the end of the segment 

            try: 

                end_xw, end_yw = IMG2W(segment[-1][1], segment[-1][0]) 

                end_drawing = lab_invk(end_xw, end_yw, height_sheet, 0) 

                end_drawing = [float(val) for val in end_drawing] 

                move_arm(pub_command, loop_rate, end_drawing, vel, accel, 

'L') 

            except ValueError as e: 

                rospy.logwarn(f"Skipping invalid end point: {e}") 

                continue 

 

def main(): 

    global image_x_len, image_y_len, scale, x_offset, y_offset, height_sheet, 

height_free 

 

    # Initialize ROS node 

    rospy.init_node('lab5node') 

 

    # Initialize publisher for ur3/command with buffer size of 10 

    pub_command = rospy.Publisher('ur3/command', command, queue_size=10) 
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    # Initialize subscribers 

    rospy.Subscriber('ur3/position', position, position_callback) 

    rospy.Subscriber('ur3/gripper_input', gripper_input, input_callback) 

 

    # Wait until ROS is ready 

    while not rospy.is_shutdown() and not current_position_set: 

        rospy.loginfo("Waiting for initial position...") 

        rospy.sleep(0.1) 

 

    # Initialize the rate to publish to ur3/command 

    loop_rate = rospy.Rate(SPIN_RATE) 

 

    # Velocity and acceleration of the UR3 arm 

    vel = 8.0 

    accel = 8.0 

 

    # Move to the home position 

    move_arm(pub_command, loop_rate, home, vel, accel, 'J') 

 

    ##========= Image Processing and Drawing =========## 

 

    # Load the image 

    image_path = './images/avengers7.jpg' 

    image = cv2.imread(image_path) 

    if image is None: 

        raise ValueError(f"Image at path '{image_path}' could not be loaded. 

Check the file path and format.") 
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    # Downscale the image to reduce processing time and noise/increase for 

opposite 

    # Controls effective resolution of frawn image 

    max_dimension = 2000 

    height, width = image.shape[:2] 

 

    scaling_factor = max_dimension / float(max(height, width)) 

    image = cv2.resize(image, None, fx=scaling_factor, fy=scaling_factor, 

interpolation=cv2.INTER_AREA) 

    rospy.loginfo(f"Image downscaled by a factor of {scaling_factor:.2f} to 

reduce noise and processing time.") 

 

    # Flip and rotate image (landscape/portrait) 

    image = cv2.flip(image, 0) 

    image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE) 

 

    # Get image dimensions 

    image_y_len = float(image.shape[0])  # Height 

    image_x_len = float(image.shape[1])  # Width 

 

    # Calculate scaling factor to fit the image within the sheet 

    scale = min(sheet_x_len / image_x_len, sheet_y_len / image_y_len) 

    rospy.loginfo(f"Calculated scale: {scale:.4f}") 

 

    # Detect contours using the improved find_contours function 

    rospy.loginfo("Detecting contours...") 

    contours = find_contours(image) 

    rospy.loginfo(f"Detected {len(contours)} contours after simplification 

and filtering.") 
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    if not contours: 

        rospy.logwarn("No contours detected. Exiting.") 

        return 

 

    # Sort contours by proximity to optimize drawing path 

    rospy.loginfo("Sorting contours by proximity...") 

    sorted_contours = sort_contours_by_proximity(contours) 

    rospy.loginfo("Sorted contours.") 

 

    # Draw the image 

    rospy.loginfo("Starting to draw the image...") 

    draw_image(sorted_contours, pub_command, loop_rate, vel, accel) 

    rospy.loginfo("Image drawing completed.") 

 

    # Return to the home position 

    move_arm(pub_command, loop_rate, home, vel, accel, 'J') 

 

    rospy.loginfo("Task Completed!") 

    rospy.loginfo("Use Ctrl+C to exit program") 

    rospy.spin() 

 

if __name__ == '__main__': 

    try: 

        main() 

    except rospy.ROSInterruptException: 

        pass 

 

 


